Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 9(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316111

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive form of mammary malignancy currently without satisfactory systemic treatment options. Agents generating reactive oxygen species (ROS), such as ascorbate (Asc) and menadione (Men), especially applied in combination, have been proposed as an alternative anticancer modality. However, their effectiveness can be hampered by the cytoprotective effects of elevated antioxidant enzymes (e.g., peroxiredoxins, PRDX) in cancer. In this study, PRDX1 mRNA and protein expression were assessed in TNBC tissues by analysis of the online RNA-seq datasets and immunohistochemical staining of tissue microarray, respectively. We demonstrated that PRDX1 mRNA expression was markedly elevated in primary TNBC tumors as compared to non-malignant controls, with PRDX1 protein staining intensity correlating with favorable survival parameters. Subsequently, PRDX1 functionality in TNBC cell lines or non-malignant mammary cells was targeted by genetic silencing or chemically by auranofin (AUR). The PRDX1-knockdown or AUR treatment resulted in inhibition of the growth of TNBC cells in vitro. These cytotoxic effects were further synergistically potentiated by the incubation with a combination of the prooxidant agents, Asc and Men. In conclusion, we report that the PRDX1-related antioxidant system is essential for maintaining redox homeostasis in TNBC cells and can be an attractive therapeutic target in combination with ROS-generating agents.

2.
Br J Cancer ; 119(7): 873-884, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30287919

RESUMO

BACKGROUND: Our previous work has shown peroxiredoxin-1 (PRDX1), one of major antioxidant enzymes, to be a biomarker in human breast cancer. Hereby, we further investigate the role of PRDX1, compared to its close homolog PRDX2, in mammary malignant cells. METHODS: CRISPR/Cas9- or RNAi-based methods were used for genetic targeting PRDX1/2. Cell growth was assessed by crystal violet, EdU incorporation or colony formation assays. In vivo growth was assessed by a xenotransplantation model. Adenanthin was used to inhibit the thioredoxin-dependent antioxidant defense system. The prooxidant agents used were hydrogen peroxide, glucose oxidase and sodium L-ascorbate. A PY1 probe or HyPer-3 biosensor were used to detect hydrogen peroxide content in samples. RESULTS: PRDX1 downregulation significantly impaired the growth rate of MCF-7 and ZR-75-1 breast cancer cells. Likewise, xenotransplanted PRDX1-deficient MCF-7 cells presented a retarded tumour growth. Furthermore, genetic targeting of PRDX1 or adenanthin, but not PRDX2, potently sensitised all six cancer cell lines studied, but not the non-cancerous cells, to glucose oxidase and ascorbate. CONCLUSIONS: Our study pinpoints the dominant role for PRDX1 in management of exogeneous oxidative stress by breast cancer cells and substantiates further exploration of PRDX1 as a target in this disease, especially when combined with prooxidant agents.


Assuntos
Antioxidantes/administração & dosagem , Neoplasias da Mama/terapia , Diterpenos do Tipo Caurano/administração & dosagem , Técnicas de Silenciamento de Genes/métodos , Peroxirredoxinas/genética , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/farmacologia , Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Feminino , Glucose Oxidase/administração & dosagem , Glucose Oxidase/farmacologia , Humanos , Células MCF-7 , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Interferência de RNA , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Arch Immunol Ther Exp (Warsz) ; 66(4): 289-298, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29344676

RESUMO

The idea of using the effector immune cells to specifically fight cancer has recently evolved into an exciting concept of adoptive cell therapies. Indeed, genetically engineered T cells expressing on their surface recombinant, cancer-targeted receptors have been shown to induce promising response in oncological patients. However, in addition to exogenous expression of such receptors, there is also a need for disruption of certain genes in the immune cells to achieve more potent disease-targeted actions, to produce universal chimeric antigen receptor-based therapies or to study the signaling pathways in detail. In this review, we present novel genetic engineering methods, mainly TALEN and CRISPR/Cas9 systems, that can be used for such purposes. These unique techniques may contribute to creating more successful immune therapies against cancer or prospectively other diseases as well.


Assuntos
Edição de Genes/métodos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/fisiologia , Neoplasias/imunologia , Linfócitos T/fisiologia , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citotoxicidade Imunológica , Engenharia Genética , Humanos , Técnicas Imunológicas , Células Matadoras Naturais/transplante , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...